openGauss数据库核心技术在线阅读
会员

openGauss数据库核心技术

李国良 周敏奇编著
开会员,本书免费读 >

计算机网络数据库14.2万字

更新时间:2022-07-27 19:28:18 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

本书系统论述了openGauss数据库理论、技术及应用。本书共11章,首先介绍数据库发展历史,包括传统的网状数据库、层次数据库、关系数据库、NoSQL数据库、NewSQL数据库、云数据库、多模数据库、分布式数据库等。其次介绍结构化查询语言(SQL)、SQL语法、存储过程、触发器、游标、数据库设计规范和E-R模型等数据库基础知识。再次介绍数据库未来发展趋势,包括新硬件、不同部署形态、新应用对数据库的影响。最后重点介绍openGauss的核心技术,包括openGauss的核心架构、面向鲲鹏和昇腾等新硬件的优化技术、SQL引擎、执行器技术、数据库存储技术、数据库事务机制、数据库安全、数据库自治技术等。为方便读者掌握数据库教学内容,本书每章都提供了小结和习题(含答案)。通过阅读本书,读者可以深入了解数据库的发展历史与未来趋势、数据库系统架构、鲲鹏和昇腾优化技术、数据库事务处理技术、数据库执行器技术、数据库安全技术,从而既可以在将来开发数据库的核心代码,也可以更好地利用数据库开发应用。本书既可作为高校本科生和研究生学习数据库的参考书,也可作为高等院校、科研机构等相关单位从事数据库理论教学或科学研究的教师、系统实现的研究人员的参考书,还可供企业工程师进行数据库二次开发和应用开发的参考。
品牌:清华大学
上架时间:2020-07-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

李国良 周敏奇编著
主页

同类热门书

最新上架

  • 会员
    本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例
    戴刚 张良均主编计算机10.4万字
  • 会员
    这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。
    陈鹤 杨国栋计算机14万字
  • 会员
    本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。
    傅一行计算机13万字
  • 会员
    本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云
    戴经国 何丰 王国滨 郭炳宇 姜善永计算机12.1万字
  • 会员
    本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
    张平文 邱泽奇编著计算机14.5万字
  • 会员
    《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员
    刘伟计算机0字
  • 会员
    本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth
    王俊主编计算机12.3万字
  • 会员
    本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。
    袁昕编著计算机8.5万字
  • 会员
    本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预
    翟世臣 张良均主编计算机13.6万字