跨数据中心机器学习:赋能多云智能数算融合在线阅读
会员

跨数据中心机器学习:赋能多云智能数算融合

虞红芳等编著
开会员,本书免费读 >

计算机网络人工智能13.5万字

更新时间:2023-12-06 16:40:58 最新章节:反侵权盗版声明

立即阅读
加书架
下载
听书

书籍简介

本书基于作者多年的研究成果,详细介绍了跨数据中心机器学习的训练系统设计和通信优化技术。本书面向多数据中心间的分布式机器学习系统,针对多数据中心间有限的传输带宽、动态异构资源,以及异构数据分布三重挑战,自底向上讨论梯度传输协议、流量传送调度、高效通信架构、压缩传输机制、同步优化算法、异构数据优化算法六个层次的优化技术,旨在提升分布式机器学习系统的训练效率和模型性能,突破跨数据中心机器学习的通信瓶颈和数据壁垒,实现多数据中心算力和数据资源的高效整合。
上架时间:2023-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

虞红芳等编著
主页

最新上架

  • 会员
    本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。
    无戒 杜培培 俞庚言计算机14.7万字
  • 会员
    本书是关于如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安·拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。
    (美)塞巴斯蒂安·拉施卡计算机13.8万字
  • 本书分两篇,为读者提供基于制造业视角的大模型理论与应用指南。基础篇深入大模型理论层面,主要介绍大模型的基础知识、构建路径、价值对齐策略,同时涉及多模态与AIGC技术、提示词工程的相关知识。应用篇则聚焦于大模型的实践应用层面,主要讲解垂直制造领域微调、RAG等构建技术,AIAgent的原理与应用,以及大模型压缩与部署策略,并且通过具体案例来展示大模型在工业制造及设备运维等方面的应用,最后对大模型进行
    郭秉义计算机18.3万字
  • 会员
    随着Web3.0时代的来临,我国教育领域迎来了一场全面而深刻的变革——AIGC、ChatGPT、大数据、云计算、物联网、数字孪生、元宇宙等新兴技术与教育行业的融合程度日益加深,AI驱动的教育新形态、新模式、新产品不断涌现,数字化、网络化、智能化逐渐成为引领我国教育变革与转型的重要方向。本书立足于全球范围内智慧教育领域的实践经验与前沿趋势,全面阐述AIGC、ChatGPT、元宇宙、数字孪生等新兴技
    程君青 邵立东 杨爱喜计算机13.8万字
  • 会员
    本书围绕“公平、隐私与保障、可靠与安全、包容、负责、透明”六个人工智能需要遵循的原则,诠释当代青少年对负责任的人工智能的认识和思考。
    王岭主编计算机7.1万字
  • 会员
    本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大
    秋叶 佘有缘计算机7.3万字
  • 这是一本探讨人工智能与生物技术的融合颠覆传统医疗,并会对未来药物研发产生重大影响的书。作者凭借其在生物科学方面的专业背景,以及在生物技术和制药行业的从业经验,为读者呈现了对于医疗科技这一前沿领域的深刻见解。书中首先概述了数据科学方法的兴起以及生物学领域的范式转变,这一转变催生了计算生物学的革命,即通过计算机模拟进行生物实验和药物研发。作者详细介绍了人工智能和深度学习领域的重大突破,并探讨了这些技术
    (美)布赖恩·希尔布什计算机18.6万字
  • 我们当下正在经历一场AI革命。现在有创纪录的310万个机器人在工厂工作,从事从组装电脑到包装货物以及监测空气质量等各种工作。数量庞大的智能机器以各种各样的方式影响着我们的生活,如提高外科医生的手术精确度,清洁我们的家等等,我们正处于机器智能带来的令人兴奋的可能性当中。下一个万亿规模的企业,也许正在AI机器人领域诞生。当下的机器人产业,远远超出常人的想象。你会看到全世界最先锋的机器人研究团队如何开发
    (美)丹妮拉·鲁斯 (美)格雷戈里·莫内计算机13.5万字
  • 会员
    本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。
    段小手计算机18万字