会员
生成式AI入门与AWS实战
更新时间:2024-09-05 17:47:43 最新章节:关于封面
书籍简介
本书是专注于如何在AWS上开发和应用生成式AI的实用指南,旨在为技术领导者、机器学习实践者、应用开发者等提供深入了解和应用生成式AI的策略与方法。本书首先介绍了生成式AI的概念及其在产品和服务中的应用潜力,然后详细阐述了生成式AI项目的完整生命周期。作者探讨了多种模型类型,如大语言模型和多模态模型,并提供了通过提示工程和上下文学习来优化这些模型的实际技巧。此外,本书讨论了如何使用LoRA技术对模型进行微调,以及如何通过RLHF使模型与人类价值观对齐。书中还介绍了RAG技术,以及如何利用LangChain和ReAct等开发agent。最后,本书介绍了如何使用AmazonBedrock构建基于生成式AI的应用程序。基于该强大的平台,读者可以实现自己的创新想法。本书适合对生成式AI感兴趣的学生和研究人员、在AWS上开发AI应用程序的软件开发人员和数据科学家、寻求利用AI技术优化业务流程的企业决策者以及对技术趋势保持好奇心的科技爱好者阅读。
品牌:人邮图书
译者:生成式AI技术兴趣小组
上架时间:2024-06-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)克里斯·弗雷格利等
同类热门书
最新上架
- 会员本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了计算机26.2万字
- 会员本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字
- 会员大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字
- 会员本书以工作场景和具体任务来驱动,包括53个场景展示、85项任务模拟、237次提问示范,让完全不懂技术的小白,也能成为ChatGPT工具使用方面的行家。本书通过详细讲解具体任务的提问与追问方法,让ChatGPT成为每个人的工作好帮手,帮助人们提升工作效能,打造超能个体与超能团队。计算机13.8万字
- 会员《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字
- 会员这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。本书采用案例驱动的写作方式,通过实际业务案例详细拆解AI技术在各个场景中的应用步骤和技巧。语言简洁易懂,理论与实践结合,注重实计算机17.2万字
- 会员本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字
- 会员随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字