
会员
智能计算系统:从深度学习到大模型
更新时间:2024-11-13 10:38:36 最新章节:封底
书籍简介
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从通用逐步走向专用的过程,第7章介绍深度学习处理器的体系结构应当如何应对大模型处理中的计算、访存、通信瓶颈,第8章介绍基于BCL语言的高性能算子开发优化实践,第9章介绍面向大模型的计算系统并以BLOOM作为驱动范例。本书适合作为高等院校相关专业的教材,也适合人工智能领域的科研人员参考。
品牌:机械工业出版社
上架时间:2024-07-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
陈云霁等编著
同类热门书
最新上架
- 会员本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法到使用ChatGPT进行数据准备、数据清洗、数据特征提取、数据可视化、回归分析与预测建模、分类与聚类分析,以及深度学习和大数据分析等全面的内容。计算机10.7万字
- 会员本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字
- 会员本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。计算机14万字
- 会员本书结合作者10多年写作经验,基于AI应用ChatGPT、文心一言、智谱清言、讯飞星火、通义千问、Kimi等,详细介绍了使用AI写作的流程、方法和技巧,旨在帮助想要通过内容输出加速个人发展的读者,快速掌握AI自媒体写作的方法和技巧。本书分为11章,涵盖AI自媒体写作概述、AI提示词、AI起标题、AI做选题、AI角色化写作、AI套路化写作、AI仿写、AI模块化写作、AI改写、AI润色、AI智能体写作计算机9.2万字
- 会员本书通过对10款人工智能应用的介绍及调试,帮助读者快速掌握人工智能辅助文案变现的方式。本书共10章,分别讲解AI智能创作,AI爆款文案写作工具,人工智能辅助泛流量文案、泛商业文案、私域文案创作,利用人工智能实现文案变现的底层逻辑,以及在今日头条、百家号、小红书、知乎等平台及不同展示形式下进行文案创作的实战案例等。计算机12.2万字
- 会员本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字
- 会员本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字
- 会员本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。计算机10.5万字
同类书籍最近更新
- 会员本书从一个完全不了解机器学习的程序员的视角出发,通过一系列生动有趣的具体应用实例,运用诙谐的语言以循序渐进的方式比较系统地介绍机器学习的本质思想、基本理论和重要算法,比较细致地剖析线性模型、感知机模型、浅层神经网络、深度神经网络的设计原理与编程方法,引导读者亲自动手从零开始打造和完善机器学习的底层代码,逐步消除对机器学习算法原理的认知盲点,让广大初学者能够较为轻松地掌握机器学习和深度学习的基本理论人工智能15.6万字
- 会员机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9人工智能12.3万字