
会员
情感计算
更新时间:2024-12-04 17:52:57 最新章节:封底
书籍简介
在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和实用技术,已应用于舆情分析、电子商务等领域,具有重大的社会价值和商业价值。本书介绍的知识点包括文本情感分析的基础理论和资源、核心任务,以及上层应用三大部分。在文本情感分析的基础理论和资源部分,该书将讲述基于深度学习的情感表示方法,以及语料、词典和相关评测等资源;在文本情感分析的核心任务部分,该书将讲述文本情感分类、情感信息抽取、隐式情感、多模态情感等若干核心任务;在文本情感分析的上层应用部分,该书将讲述观点分析、情感文摘等典型应用。
品牌:机械工业出版社
上架时间:2024-09-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
最新上架
- 会员本书讲解如何利用AI工具来高效制作和设计PPT,全书共分为8章,前面7章分别介绍了PPT不同制作内容的相关知识和技巧,包括软件操作层面、设计思维层面、素材应用层面的内容,第8章模拟了两个真实工作场景下的PPT使用需求,逐步讲解设计的关键环节,旨在帮助读者解决工作中的实际问题。计算机601字
- 会员本书是一本面向产品经理的实用新书,分12章探讨如何用ChatGPT提升产品管理工作的效率和质量。第1章介绍了人工智能对产品管理的影响;第2章介绍用ChatGPT提高文档写作效率;第3章介绍用ChatGPT进行竞品和市场分析;第4章介绍用ChatGPT优化需求管理;第5章介绍用ChatGPT分析产品数据;第6章介绍用ChatGPT改进用户体验;第7章介绍用ChatGPT设计产品原型;第8章介绍用Ch计算机11.5万字
- 会员本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大计算机12.3万字
- 会员青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书将生活中的一些案例和程序算法相结合,深入浅出地为学生讲解不同进制之间的转换、函数计算机3.9万字
- 会员本书通过13章的探讨,带领读者踏上项目管理卓越之路。第1章“人工智能颠覆与重塑项目管理”,首先揭示了人工智能对项目管理的深刻影响和带来的机遇与挑战。紧接着,第2章至第13章依次介绍了使用ChatGPT编写各种文档、在项目启动中的应用、帮助组建高效团队、辅助项目沟通管理、项目计划与管理、项目成本管理、项目时间管理、项目质量管理、项目风险管理、辅助采购计划与采购流程、辅助项目绩效管理以及进行项目总结等计算机16.6万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
同类书籍最近更新
- 会员本书从一个完全不了解机器学习的程序员的视角出发,通过一系列生动有趣的具体应用实例,运用诙谐的语言以循序渐进的方式比较系统地介绍机器学习的本质思想、基本理论和重要算法,比较细致地剖析线性模型、感知机模型、浅层神经网络、深度神经网络的设计原理与编程方法,引导读者亲自动手从零开始打造和完善机器学习的底层代码,逐步消除对机器学习算法原理的认知盲点,让广大初学者能够较为轻松地掌握机器学习和深度学习的基本理论人工智能15.6万字
- 会员机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9人工智能12.3万字
- 会员本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何人工智能13.3万字