1.3 高斯光束[10~12]
稳态传播的光波满足亥姆霍兹方程,柱面坐标系中的亥姆霍兹方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739275355-gXGK6v3ZYZsDH97rEuc3jeyoc7Fswc8N-0-c2f510ddda749bb62660f1d3bd18c4df)
设光主要沿z方向传播,电场复振幅沿z方向缓慢变化。在缓变振幅近似下的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0002.jpg?sign=1739275355-5t0wFXArvaSl93iMxGENfcIQuooMZusG-0-24a47173269ed20667ca6a4edfe2f7b8)
所谓缓变振幅近似,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739275355-cKW53U1ilyBLlbU2Ld82JAoP5q04ag3V-0-ac09d424fd87d1793f044984e2e03a6c)
将式(1.3-2)代入方程(1.3-1),并利用缓变振幅近似,忽略对坐标z的二阶导数,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0004.jpg?sign=1739275355-MwvRjcoC3HFIJ2TysxBXx0n5GqhiNOgb-0-ca4acc20cf73f5b58e6e913c5a68397c)
在z=0处,振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1739275355-HIo9rcOK1B9KDc0lxDsJhjhZnzTif5W8-0-38501ccd23ec057a06bccd1e177d33f5)
设试解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1739275355-PmNp8j2Ni4yVumrpBogrig6K3ntMg3Ia-0-7320429a928a8072cabc755b862e8818)
其中,函数f1(z)和f2(z)满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0007.jpg?sign=1739275355-51Pr8T5eNYcqIqR6wyq1a3pQWqMk1om8-0-0176e6fd6224ad9ad9af6ade1f4ef249)
将试解(1.3-6)代入式(1.3-4)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1739275355-gWGhQ0uT8K39XTyf2IbuBm2OcExRqI3c-0-6846fe3788d0f70f5ef78d8e3f0c5f23)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0009.jpg?sign=1739275355-uvurvdH5wQ7pAp28gFdhGdnGyMWlxUzC-0-8d0848c1f426ab1665a638a3d3ec08db)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0010.jpg?sign=1739275355-3xYBDUfBm3dyd3kxsCAm10UI1rrFvj3u-0-ca2bcea4035d1410132c267ed15cc62e)
式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0011.jpg?sign=1739275355-Kpfkc14yobtHoG5QlHRHZ0F1wXBmE8LC-0-82c6a455b4cc1ae28f6eb1d0130a294a)
Z0称为瑞利范围或瑞利长度。将式(1.3-9)代入试解(1.3-6),得高斯光束的复振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0012.jpg?sign=1739275355-Tz9WCeGPQpQvy8a8o4oHAKTVBTcSp71J-0-12af85010ad51307c25d78105a366cb6)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0013.jpg?sign=1739275355-4hoLxqhoRPvOSjrAnKcRBvBpDdhwOI2F-0-b154a5e8b8bcee7980934f53033c3f1b)
于是,高斯光束的电场强度可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0014.jpg?sign=1739275355-gdLccmIvP8iW6mU9cNw51qrAa7pILe06-0-6b5e53d4b81678e261e38e9e527aa09b)
下面介绍式(1.3-13)中参量w(z)、R(z)、φ的意义。
1.3.1 高斯光束的束宽与远场发散角
在z为常数的平面内,高斯光束的场振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0001.jpg?sign=1739275355-PatrbgzpKi8fRrESoFaQijiKgmhsyzZJ-0-6315d9b1ef5458add96fec9887ea788f)
这是一个高斯函数。由高斯函数的性质可知,w(z)为场振幅下降到中心值1/e处的半径值,因此称为高斯光束的束宽。束宽w(z)随z变化,具有以下形式
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0002.jpg?sign=1739275355-9pGHdDZ6DqFrYtwzGhhMc9hXV7K2EIvK-0-e8d75f6fe6db2951f026e48c6bc9404e)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0003.jpg?sign=1739275355-DZM9H9uXxhEkefjpX3saTpy7JZNZ6oJB-0-6759fa5b2c4f9805ed0ee3d3c7b73f4f)
可见,束宽按双曲线规律向外发散。在z=0处,w(0)=w0为最小值,称为束腰。引入远场发散角θ0,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0004.jpg?sign=1739275355-0FXpFo3684uYVDqlsmjZyrJsiOO5e7mm-0-9d9c9ccef65d2c13c67ca4449837eccd)
1.3.2 高斯光束的等相面曲率半径
高斯光束的等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739275355-w14oFJdoswQeilAoUHy3KcexfzzOq57f-0-4e476a272d3eae3416c8d789d7b0dc22)
这里
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739275355-8Z4jQJEzPUoXitF5PJ8xnEopFpviTsit-0-6315cf8a9526b87bf47aae45d5bb27d7)
在傍轴条件下,φ(z)可以略去,故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739275355-YJqkakoZUHmVOCyzRGsZwhl2FFsFQyhC-0-aae1f07b97f6540c96a97d42797fc602)
除z=0面外,等相面为抛物面。上式也是原点在(0,0,a)、半径为R的球面方程的傍轴形式,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0008.jpg?sign=1739275355-R2XEvLO3PfNcLnc4mCQLaNEwH6Oy9UPp-0-2c28324be4e2bd046a731b6cbd33d8c4)
当z=0时,R→∞,等相面为平面;当z≪Z0时,R~/z,等相面近似为平面;当z=±Z0时,R=2Z0,取极小值;当z≫Z0时,R→z,在远场可看作由z=0点发出,半径为z的球面波。
1.3.3 高斯光束的纵向相位因子
高斯光束的纵向相位因子为φ=arctanz/( Z0),总相移为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739275355-F1TMR24i8hIyadoF4yyQlKMSabIgjDt6-0-ffceadce269cf5fce6e50118947620a7)
它表示高斯光束在点(r,z)处相对于点(0,0)处的相位差。其中kz为几何相移,kr2/[2R(z)]为与
径向相关的相移,φ=arctanz/( Z0)为高斯光束经传播距离z后相对几何相移产生的附加相移。