1.5 电磁场的能量与坡印廷矢量[6],[7],[17],[18]
根据麦克斯韦方程组
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0007.jpg?sign=1739278182-VZKtwFUSjaqxAkzmNTObr11AuNpRkbJy-0-9aaaf67ca5af1b5f1f98af32ed4426d1)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0008.jpg?sign=1739278182-VgbgoDLxPg8QdLDsvvDtm8wnjPfbitAP-0-ba544d48d4416f5f6d92e642fc13e033)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0009.jpg?sign=1739278182-o9DqG0lPsdCg6YvNcctUCAIr8Oj9CnYY-0-d9da71d6f91407e383709254fa12c8de)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0010.jpg?sign=1739278182-CdXrRGPbOAG4D3MP93OtiY5cqFk0Ih2m-0-c68e81e461c111948d80311fbe37c02a)
用H点乘式(1.5-1a)两边得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0001.jpg?sign=1739278182-nEjBw92L0giZUDSF8zBFz6vJWOESSE1P-0-d075c5bd91058936806afe85d68181c3)
用E点乘式(1.5-1b)两边得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0002.jpg?sign=1739278182-8FrCgOKUBiWhUdUmDr0OlqUIfl5cElTF-0-fbe73c5348f0c1b01af75247973fce27)
式(1.5-2)与式(1.5-3)相减得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0003.jpg?sign=1739278182-h8MNuuu3pw3O8Qba4r6rA9AdC3c00gFd-0-c514e46d07b92db55fdb45ff5c530760)
根据矢量运算公式,上式左侧为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0004.jpg?sign=1739278182-gwTXeTThbBedfWMXl14CSURhrjLGAZX0-0-04259838eb93ea864a0b0919f52c4909)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0005.jpg?sign=1739278182-Uy3IA84pubrt4joKENgU2ujk1AmLYAhV-0-c816b146cf7688848bc9f1172487b053)
引入坡印廷矢量S,其定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0006.jpg?sign=1739278182-MdqAHnws5CtGd05LRN9iOmwnKZCtlFRt-0-fcad3f16ba45b807ac0bdbfc6e558855)
S也称为能流密度矢量,表示单位时间内通过垂直于波传播方向的单位面积的电磁场能量。另外
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0007.jpg?sign=1739278182-jsCpawf4fVIHnNcLi0HtqPVvsTFWgLMI-0-aa641f4fb0f32fd849f572953de53fc2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0008.jpg?sign=1739278182-9ARigW7nWVH6uD2mGRxYbL49rvFcGnmX-0-27525390da20a300fe3c9237c27d5ff5)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0009.jpg?sign=1739278182-FrKxRavXuAQZB5o3DeRWMeiSO7pmrB3P-0-1e0422b0ac5d5d8a451611be00ec1180)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0010.jpg?sign=1739278182-fdrVxSsDaIRTEXQfOZ4WSBleBjTxjB2W-0-88c7998cd43c7eb4f75b363692c7f97a)
we与wm 分别为电场能量密度和磁场能量密度。式(1.5-10)与式(1.5-11)之和为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0011.jpg?sign=1739278182-qIJl0lNlpEoLFT809Uc02TxuYGoKeXAI-0-08466fa12a150d475687eeaa811908d2)
w为电磁场能量密度,于是式(1.5-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0012.jpg?sign=1739278182-G5nYIqeL6IwfI6C5kUmaLXUbbFUM5V7p-0-1bbafe29a1b7cc944a1be151d658d058)
将上式在所考虑的体积V中进行积分可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0013.jpg?sign=1739278182-xRPnRMnp16HE0TqFknZr2zW1pC0HJz7j-0-82f4fe791e8ef80a9dc94c2005155a05)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0014.jpg?sign=1739278182-Jo0eFm9P3CD9I4kD69kjq9ZTZTsa4tgp-0-612d2e9c14615fec275a5dae656fe750)
上式第一项为坡印廷矢量的面积分,表示单位时间内流出包围所考虑体积V的封闭曲面Σ的电磁场能量。上式第二项W为w在体积V中的积分,dW/dt表示单位时间内体积V中电磁场能量的增量。下面讨论第三项的意义。有非静电力K存在时的欧姆定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0015.jpg?sign=1739278182-qOiTr72ivcnfV6tGWORjY2vWqOc3ndbo-0-c0a2e75fb927772bde807e37c009e8e3)
其中,σ为电导率,ρR为电阻率(注意区别于麦克斯韦方程组中的电荷密度ρ)。这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0016.jpg?sign=1739278182-Oh1UprEJmXTAAGVBQRwedCnJIauXrcpG-0-de2b01e03d28cd6cab1530f55d967636)
为了更清楚地看出上式的含义,选择一个截面积为ΔΣ、长为ΔL的电流管,如图1.5-1所示,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0001.jpg?sign=1739278182-DJUeXWpNfaJJ7SKZ2MBOUoBneSOTbd0M-0-2a6dfdcd3c9c9d3c55d0c5d3607407ba)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0002.jpg?sign=1739278182-AIQVvYIES2AKwxKm1bvBSsw44Jv55Bfs-0-3b1bd71f70d3ef7744020c9a278303cb)
图1.5-1 电流管示意图
式(1.5-18)中,I为流过所考虑的电流管的电流,R为该电流管的电阻,Δε为非静电力产生的电动势。显然,式(1.5-18)最后一个等号右边第一项表示单位时间内,所考虑空间内所产生的焦耳热损耗Q=I2R,第二项表示单位时间内非静电力所做的功P=IΔε。
将式(1.5-18)代入式(1.5-15)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0003.jpg?sign=1739278182-3fTIakYllNsGvc2XXLD7i3XxXJZXgBoN-0-ea78946f34951a2c753cab4f875d3e36)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0004.jpg?sign=1739278182-fJ7JuHugByqKt6kgdqrJFTHhKzIKRUOm-0-20ab8d5a35c7d5d5d7e24fe770c86b14)
即单位时间内体积V中电磁场能量的增量等于单位时间内非静电力所做的功P减去单位时间内从表面Σ流出的电磁场能量(坡印廷矢量的面积分)和单位时间内的焦耳热损耗Q。这就是电磁场的能量守恒定律。式(1.5-20)为电磁场的能量守恒定律的数学表述,称为坡印廷定理。式(1.5-13)为坡印廷定理的微分形式。