2.4 光在金属表面的反射和折射[2],[5],[20],[21]
2.4.1 金属中的透射光
假设电磁波在介电常数为ε、磁导率为μ、电导率为σ的各向同性介质中传播,根据麦克斯韦方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0002.jpg?sign=1738839137-76wSQk5KGrHDn5YlAwFxBCTIaMPVSMD5-0-d4c354be8debf293f9103bbe1e10dbc9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0003.jpg?sign=1738839137-643NGDH7zKU0tS6Nixg4Tc1kfbZ8BOhn-0-02ad3ec6d7303b2c116c31db8bf07ba6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0004.jpg?sign=1738839137-x1ma0RmiqWLwtNlZ3Yng4TTzv0RXqwNA-0-2a484f754fcfcd1c432bd136f499d9c3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0005.jpg?sign=1738839137-On1D7h1q7Avp6Ar1biCgVS7p1MJhQLiu-0-ee0ddc44e0a01e4282838d26a3d60cc6)
式中,传导电流密度j和自由电荷密度ρ之间满足电流的连续性方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0006.jpg?sign=1738839137-qtvF4ZQIUybhkjr94de6TLUgRkiWUyjz-0-d7e554e869a64c90bdba91e98e45b99a)
由本构关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0007.jpg?sign=1738839137-geiblltQkT3Y4jz3WpeBxeWH3NrQFwYJ-0-327f4c409c8d77ab85ccaeebf8e00f55)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0008.jpg?sign=1738839137-YQHIgzjSk2PIiJUDkatinaAF1jGdgets-0-1269d07b471249295c612cddad0d184c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0009.jpg?sign=1738839137-3wx2wolOsFj6M1zuUUA2wlhfUrEc5Pm2-0-a729f2eaf7a227a567d4d455c5efbb11)
将式(2.4-3)、式(2.4-5)代入式(2.4-1b)得
▽×H-=σE
对上式求散度得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0011.jpg?sign=1738839137-Fvf4nLwgthx1m07trCpvHS5xYqbCP7Dq-0-7909cb247de954f304c539781a906e54)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0012.jpg?sign=1738839137-0gUW88Woa45aw5vFj297U5U7hcZOxpzu-0-da9071ba634a568ce0475f502ca7c6e9)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0013.jpg?sign=1738839137-uleJMbhrEbsAoi48NwXkIVZQFHmUMNBo-0-ef80d154e67610c4620ab3189ab856ca)
其解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0014.jpg?sign=1738839137-M6SoKY9ngws9jN3N1SuFmpAq8btOjXWA-0-fbf37cda0f93dc8594f14fe97ecbe59b)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0015.jpg?sign=1738839137-3lxRJUaGPml65si4G5cOo8TlO2SkASJ1-0-b791e0fddbec138b5806b0c7989a6a8c)
τ称为弛豫时间。由此可见,自由电荷密度ρ随时间指数衰减。通常τ很短,对于金属约为10-1 8秒量级,因此金属中的自由电荷密度可认为始终为零,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0001.jpg?sign=1738839137-aCQHDPjJXEjJPYX7TTyieaj03KhgjKKb-0-434fdd552b1aab65f842795aeca2a3d4)
金属中的波动方程可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0002.jpg?sign=1738839137-lCk9LmfcULiBz8aTQhl7WLWHI0W3ZBT0-0-ba358893760e08b417fa0c8bf985800d)
对单色平面光波有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0003.jpg?sign=1738839137-ElmTcd1zwN8o6teQjHkkczMzOuP9omKe-0-98f56c88eb242fa00d9cc016026404da)
将上式代入式(2.4-12)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0004.jpg?sign=1738839137-1oyF1spJmWBeiyBAkJlihg3NTlCfOHBz-0-55b5736893d006aca45b8281e208be2a)
引入复波数k~,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0005.jpg?sign=1738839137-lbDWrbFzYp7SnsPglB1gY55WdUOxGSSK-0-f9b27f210d3bb4516d35afaa6540c0e5)
再定义复介电常数ε~为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0006.jpg?sign=1738839137-XVSd06pcuTXWcIMiBJ0oornoeD2JbDWQ-0-3e8c09e971897203e07ef0c085a6dfc5)
这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0007.jpg?sign=1738839137-spqw7QjjQHh3s5d6FRqTNSbYWvc6V8dk-0-83a48ffc70438d8a54d7fc08e319565d)
它与介质对应的关系相似。同样,可引入复相速v~、复折射率n~,各自表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0008.jpg?sign=1738839137-oAxrIKduiwMMH7H0MMhSu1XGNykOLkEu-0-1f0e86eaad47c599e4eff1960b93e854)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0009.jpg?sign=1738839137-HCOFGjCGeC0dputAOaW9vWetiGDcPvMS-0-4c56ba9fc1ed5a8d45a8da0c57f4e241)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0010.jpg?sign=1738839137-R0zXNkGCtv3xY5SwEOOq3q6cpcHlWbvq-0-46d1958c38e3f5c3bf379a3486e89400)
式中,κ称为衰减系数。取式(2.4-19)和式(2.4-20)的平方,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0011.jpg?sign=1738839137-ghK0JQ6M389zAHehTZm1XB1IH5zBNeNF-0-a38e1b67b31c46483bb8d051433a1512)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0012.jpg?sign=1738839137-t7wjaXcXevYCxIe4Ajue2lKrAerXNdMx-0-0f76f04a5ce44570ea944bed807d4570)
故
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0013.jpg?sign=1738839137-vE7izXaZqgrykCdjflb7YiFWBTYsCHoV-0-0b278c46d26198cb69627305f8bc4a24)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0014.jpg?sign=1738839137-ZBhkH3xh38oEXk7F7J8AwHy0ITLIrQ7k-0-383a4e9f9d1b68369118bf282ac7292e)
由式(2.4-23)和式(2.4-24)解得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0015.jpg?sign=1738839137-K0nIJqMj24hKJsMZq8McmbW2pHQBAsU4-0-87f8feefd69d2f360ef9c3f21ee68a96)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0016.jpg?sign=1738839137-X9LH4rYgXsgA6qW6Qpyk3OB478PRfAmk-0-fff67227fd975ceae56bc1a916dedd96)
引入复波矢,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0018.jpg?sign=1738839137-v0dSay4W3jzw27iMYByYtWbMXTLxKRmq-0-6b567e21914871c3982481693f19e75c)
式中,为波矢的单位矢量,k'、k″均为实矢量。通常也将
定义为折射矢量N,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0021.jpg?sign=1738839137-nor2ZwQEqIll2p9x7cWtDg0IrTph10D4-0-33dff5f40c36656298a4753e1d2a58b8)
利用复波矢,可以将金属中电场矢量的波动形式表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0023.jpg?sign=1738839137-Tz6n21ClKRGj2Un7gfpbAB9PDUXf7a5E-0-40fb7b7e084d285dcb1f6e0472f8b6de)
式中,为平面波的振幅,显然振幅沿k″方向衰减,因此也称k″为衰减常数;k'·r为
相位传播因子,k'称为传播常数。k'决定平面波的等相面,而k″则决定等幅面。一般地,k'与k″的方向不同,因此等幅面与等相面不一致,说明金属中的透射波一般是非均匀波。
不妨先看一个简单的情况,即单色平面光波垂直于金属表面传播,假设金属表面为xy平面(z=0),光波沿z轴在金属中传播,此时,k'与k″都沿z轴方向,式(2.4-29)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0002.jpg?sign=1738839137-KoUB38aI7JOsXgVSNw0kD5eVqFgXslvf-0-2560b3530926428961e7e6168420d770)
其中,k'、k″分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0003.jpg?sign=1738839137-nM9x1Pq9rnqNIYvzzBDTAEZTsZTnZcBs-0-cd231f0e95519b2b4f04eb7bd2cd098f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0004.jpg?sign=1738839137-ZhHcY8litbRQ3uwPMuM8YmCoNlmgPmw9-0-4bb3c4d9c5c515ef14c0302902858eb7)
对于良导体,σ/(εω)≫1,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0005.jpg?sign=1738839137-HTYT9sZNIvI5kXYLmAZYucBEx49qPNky-0-9205940ea714cf373963edd89af9078e)
根据式(2.4-30),在z=z0=1/k″处,振幅降为表面处振幅的e-1,z0称为穿透深度,其值为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0006.jpg?sign=1738839137-IrVzSo1wpfzxlTISW7JBGP7Ob0L5Qrm8-0-be94903a36f28a774cd74a6b6311eb8b)
可见,穿透深度与光波频率及导体的电导率的平方根成反比。以铜为例,其电导率约为5.9× 107/(Ω·m),对于可见光,穿透深度约为数纳米。
将式(2.4-30)代入麦克斯韦方程组可以得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0007.jpg?sign=1738839137-qRCi6MYbPIexQ2YBhQuih0TBpLevldpa-0-73cb52389cbb907326b3e066a1f04e80)
式中,^为表面法线方向的单位矢量,注意不要与折射率混淆。对于良导体,将式(2.4-33)代入式(2.4-35)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0009.jpg?sign=1738839137-choCwTgqLdSSgj7O17qXpIPljEjJJD5i-0-82d843eba8cbcc36d80974cc132d8c88)
可见,磁场的相位比电场的相位落后π/4。并且
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0010.jpg?sign=1738839137-AuxJBr17TtJp57ltmW6uVQGF4vjvuv8u-0-ec31675cea59d665cbd3886be258a04f)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0011.jpg?sign=1738839137-OxGRZTimXAv6lwN2T1s0cqSWk8mu6Env-0-68cb2784e2fcd63d8a2a8b2b99f98b26)
而在介质中,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0012.jpg?sign=1738839137-pPN3UtAbzLjEeUkkpyVVRhDwfmCN6RMB-0-e029318ba8967635cf28f003c86a39f5)
这说明相对于介质,在金属中电磁波的磁场的作用比电场的作用要大。
下面来讨论一个普遍的例子。假设介质1是空气,介质2是金属,将金属的复折射率写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0014.jpg?sign=1738839137-KPw8OTWmxm5JmqfyYOWG0dgYbAFmyIWP-0-5fbe1a5917c52beceaa27cca6e41587e)
由斯内尔定律
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0015.jpg?sign=1738839137-D8alOZ1e9eaEtkUyGgwDzrTySdgfABwy-0-d431785290ab87676dab6fb142196a6b)
因为为复数,因此
也是复数;显然
不再有折射角的简单几何意义。在可见光范围内,金属反射不再满足布儒斯特定律。下面讨论光在金属中的实际折射角。设入射面为xz平面,金属中光波相位的空间变化为
·r,其中
可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0001.jpg?sign=1738839137-1nvjgFLktzNDkPCV4zPcH8QyHYk6Qfd2-0-dd8faa1f91c32a21319c1aa4566cc786)
由式(2.4-41)和式(2.4-42),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0002.jpg?sign=1738839137-n3g48t2SJjPuSKNestiDHPRT5FSpFcqt-0-7fe334518cf848d3c7808e8a0d44e279)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0003.jpg?sign=1738839137-j1gUY8AGQDNxZ8kWH9jylQUbFLayOjZ8-0-748d1119953546d13d053a5ac259904d)
为运算方便起见,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0004.jpg?sign=1738839137-K0VxC4gmPKsUcd3eRZNssXoLeY0Anp8j-0-fe6700c549f8e43ea413c3cde3e41494)
式中,q和γ都是实数。经过计算,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0005.jpg?sign=1738839137-UZ543qtC4w8k3wigFhvRCskTulWD23Kv-0-74d1191f97e92f565a22f5b5f0ad533f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0006.jpg?sign=1738839137-8v7Z6gqKA1ANReFp8L9x2UUrEN6IAKAX-0-815391aa42d1a8dc26110fcdda24f479)
于是得到相位的空间变化为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0007.jpg?sign=1738839137-9R7Z5J6PF0lViWcES4NasuHpurQjiR7T-0-5e889ac4bca9a6d41545cfc002f07c3f)
将上式代入式(2.4-29),可以得到等幅面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0008.jpg?sign=1738839137-EWcxiEuwykGOATc7qyaSLnceVTOVRWfh-0-e5eedac3a409f80bf0819c88ee578aee)
即z为常数的平面。同样也得到等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0009.jpg?sign=1738839137-CFvPzdsxAqQZetlhj6k6RkjUGRlydNq6-0-0e93471700389478af89525e22aee1e9)
可见,等相面为平面,设该平面的法线与界面法线的夹角为,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0011.jpg?sign=1738839137-QOSq49fA2AxE7C9w5cDbXKRZUbmwnRPO-0-afb7cfc21ca3d95e0f3268a63b6286ec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0012.jpg?sign=1738839137-Y2AoNpmeUv3EQsb49YOvvPqqb1WvanJS-0-181eb2d60da9d65ee7c1e06c6ec8da52)
则由上式可以得到,光从空气入射到金属中实数形式的折射定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0013.jpg?sign=1738839137-QXoqljfSxcrpp8fqPD7vNuJ5J7SAQXlJ-0-149e5c3a66f1f9f23ee2dcf46a077baf)
其中为光在金属中真实折射角
为金属的实折射率,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0016.jpg?sign=1738839137-W5aStpBRj3csy9b8bBacoPm8jGqHAGIe-0-375b7675850977d26b94b185aab2a489)
显然与入射角θ1有关。
2.4.2 金属界面的反射光
假设光从折射率为n1的介质入射到折射率为=n(1+iκ)的金属表面,则反射光仍然在介质中,故反射光还是均匀波。s光和p光的振幅反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0019.jpg?sign=1738839137-fMKhEtoNbmECcNb3D7tnaYYojk5azDSh-0-133653fbe8644ffa12322af83f268380)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0020.jpg?sign=1738839137-GJOaOCSCZpfICiLVUmzwFVoEjUMytBwn-0-90a6b2f0a4d2b597434782aee9a9ae32)
由斯内尔定律和三角函数关系可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0001.jpg?sign=1738839137-EXj0oFrlFA1kS31r1frrqyQDSGw6Pegm-0-3799bb2a3f74b1e5f8b9e5d0c82df881)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0002.jpg?sign=1738839137-J5MDTa2vejxzJn8MazAGj7CxEn06msdB-0-3ee0871c1f8d72c8ddfc3dce590dffa3)
则由式(2.4-53a)和式(2.4-53b)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0003.jpg?sign=1738839137-BGjNbL4dfE4Scm9y4qqZp52QOq7QFC7a-0-c07ec1d77f50c7ec1896cf0eb0ea7602)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0004.jpg?sign=1738839137-Q4EuhogJNPxN76zEdUgMeORZgnCbf3Ao-0-2d2097410649ff44c7fe43a929602249)
s光和p光的光强反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0005.jpg?sign=1738839137-pKG3wOVxonpKemadDIJr8mrvB3GlniH9-0-33c13023d173527324085b5eab1fe303)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0006.jpg?sign=1738839137-CBhWtI8MJlffVAFjJAKUNrPkFs0TyFgI-0-8c54deab97b19480cb3abfa6bda99dcf)
令δ=δs-δp,由式(2.4-44)可得,当θ1从0°到90°时,δ从180°降到0°;其中,当θ1=θP时,δ=90°,θP称为主入射角,类似于布儒斯特角。当入射角为主入射角时,RP有极小值,但不为零,故光在金属表面的反射不符合布儒斯特定律。相应地引入主方位角ΨP,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0007.jpg?sign=1738839137-1SnPxfuoZ2gqqPIJHIXnuKEwXsFvjRDq-0-c239aaa48bb603ee6c76654c2e98d495)
可以证明[2],金属的光学常数n、κ与主入射角θP及主方位角ΨP近似满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0008.jpg?sign=1738839137-KmVBfSBjxqenFE97SjUOZXJGcvL37CkG-0-6cd18b6fdcd3aeb63c3df8d64717062d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0009.jpg?sign=1738839137-qTIyYddH0rKIr4WtaZ2Tufb1k4H759b2-0-718020d1fc4d8d0718eb572c5240a13b)
因此,通过对主方位角ΨP和主入射角θP的测量,可以获得金属的光学常数。