5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1738839719-JRdCY9Lebn216MijAGafci9BfeKKIGwW-0-20355b6d495043861b102c4660609103)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1738839719-NPTDXlbfguT3riM128wMiRpVD6NIHuYZ-0-66ae24a75bd6b69bc4d2167c3eefcc30)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1738839719-uD4r3FvTc7zG1sk0qqcASfKG7L52oytY-0-2075a5e44c660515d30bef50ffc79378)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1738839719-ntfFN0cWtakiK8Bh1sm7baRXLojelhOC-0-1fd646082920fcb5c6139b73f97a4e57)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1738839719-yHh1jlXM4MLhtV7ISW2JTpQgjgoNUOYr-0-c444eb856b759e197657d3a041677bfb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1738839719-M3aPRbNtCmvLWRWzP0HV0JuFXWipmNP8-0-fae1cd51270a86748bab9476ff85b0cd)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1738839719-1ja9ukynJOYfE9MQODYzayIzQ123GGTv-0-8cab9ccfe2e4b541ee44ef732c6db16b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1738839719-l0AZOr7slNNK2hQE9XdejOI2enyf77wP-0-ad1627297a854a1fe8c2026d849fe987)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1738839719-zDHqiFuetEc6r2ViFx39P9wcKFEaqNSR-0-2fd32cd1e4e059ee2aeb24d5afd983f9)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1738839719-Umd52BuRKsaJiYDB9x3qtoOTVHfRjh6Q-0-d3109b06e5c377bcb08df24ff9c578f6)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1738839719-z8TcT2R1KN0hDLvkKIomo6kWvU9gr3HL-0-cf23a5ebd770cd3c8aa2f3e6542042b2)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1738839719-TOijzcQUbzdm1hEkGrJ3yebDSp4pjaKR-0-b902ea860f5071f6c59ba28f76b7dbdc)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1738839719-36fqLt6pOWM2Caf1AaCMKZJZpSkjaPEu-0-045323833df2ba2bdc2d701abbae4f3c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1738839719-3fwzTj0DSMin3GuKHzOLaYavRE0SLPYs-0-7383bac997b35399972c3faac6404966)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1738839719-XlJvIWk65s5uubYoDtWuG5SMCWDyZyDi-0-c2489e96a77346b98686573325aef962)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1738839719-QIbn8KkKfAgIHYYt6sbDhqzAXe3Kh4Cu-0-f25c801c20334c33093f53985029d520)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1738839719-opROWEoeLaGePzL2OjSS54xxcsSpkHft-0-4c942ef9871907c7a9e67e3ed4bc72d2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1738839719-GAIVLsjchB2HNejLQPvtb6ofHygmSdS9-0-1b5bb6892decea6a7b198fe1e73e74d0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1738839719-GBbAVig6HKC01kvkhR3pA77eL1lTUvUG-0-0aa8782cf001625a5983cd26c0c30a4e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1738839719-BUi7G6Ht9chowcGY2MZYf1XGQvSaNPgE-0-44241d5994f3653e7736e0dad35ab75f)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1738839719-AEiLvGnuV1eWFNSySVYXrK1MrnGgyps9-0-a09b539260eaf46a78d5d35116e5c190)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1738839719-t0MckVwtA5O48B0RJJx9KpI5Xam0jvbR-0-684bab2c39af507ceed3fd8ebbaa67e7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1738839719-NmHztg5g4pVi5azhAfiCd9WcsNYzZOSd-0-cbc468b8eb679ca610d17eb6d977dfc7)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1738839719-LkXG4LO1TNBAwZ3bITQE8CR3z6zr9Mwn-0-16eab843af0375c576b59a0d72e91e1b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1738839719-G9jWs7rL8wyPFDzm6Q4dk3N4qGY0qFHE-0-19ff29a13706faac04d5ae4048113f95)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1738839719-3PcLCDkLaOLpOPFden6ZIDECHIodtgbM-0-d54df0d38cba7785bcc41832a8f83b5e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1738839719-Ce9e2z9ltngHKu6lljDhKgzXAOiufIU0-0-41e3a34382dcf6ac521ce70f2123e730)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1738839719-vcJAR9AGKJxmHypy89LIW7cWGlxeTEys-0-4569b42997731973e2ae2452595d01e4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1738839719-7ZWxX3Z6wJHrivnNCXiXubV7SwtCarpY-0-c9009a050eb89b809cc8c3464902851a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1738839719-ofkTzeeOEvv1GpW21v2SWiYpEB87viJq-0-9212c45bcb4c33170b904d0e47526d84)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1738839719-CbmukWsiUTL6pN5J27ATeeLT3SJTIMIZ-0-db96300a92135aee9a940e7cb05fc969)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1738839719-JbpMAQOdXdL9YdEaaz8dRm277B9LxOLj-0-3db01decee6c9d9fa9975bf5b6828677)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1738839719-qvSq5stn9S370fS3SN5qzoMMwQlOoBEm-0-d95b1b738a9d20a726bb868e907f8421)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1738839719-4DuVkKm5lJrwwgksFqruxIy954JSdK1w-0-ba1a0a6342ae22a772afb1fc5c559bc7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1738839719-HIdBwvq9oHQCYVjmFm7cuAuzJSQA0fxD-0-884c5a1b703019076dfd2817f1c85b15)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1738839719-Bz9jH8YPIqb67QbXjrqp08GBgWqUOwbq-0-9d618ec38ccba0f5498acbe21d1191c6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1738839719-d48m1plSjYYcBud1ULzKal2Wuvhu4m7l-0-98da67802e8ba53dc01cad7ce42f6e79)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1738839719-U6PcoNI0VlARb7GhqC0YLt04HiQ2krMP-0-5010ab9aa272242758be30947765050d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1738839719-9w5oGGqADmTgbvpNaSB5VHeBOEVst9UF-0-90bca4b5daaa74b6c1042a023bbc531b)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1738839719-IHL7qIWowDlneXlcbul6Rvj5e7Bx7LB5-0-e3e833e7c0538f722ff3eb2134f77f15)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1738839719-vPILfklHdJZ4VOoU7WZQEHQa9g1lbgNV-0-89d99dff284d12137b45cdb0481e75d6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1738839719-gKcLjCfaC0RSR64Udb69CcXtXdup08AF-0-98c0cb63c992ee1d47f3abe0ce821210)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1738839719-SzSgfIfMkiKSjAfzAkd6peV67gTJUoax-0-408eeebf9de29b593916842b5c2aa1e9)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1738839719-yGG5ARLnsrvqmJZfkBe4XRiv4DqvAvOO-0-a2ac0536c7ebf1a4b4f96f5a51bad1ba)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1738839719-ZQuIODlNPQjkBPXBBFFcn2wSCvSTOV8b-0-1df23c84883156981bc9946099abde77)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1738839719-4EmtGq5WlADCM2nlgUd24O0sgJbCa1HS-0-5928e37ad90df95fdcc6b30b01619fd7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1738839719-OPFBYKoBFXd397uy2ZVoXYr4dprt4EiZ-0-41cb79429b5700f60dc41c58e648569c)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1738839719-87uezqU22wLNbTpXJvFquNGagKXbKF1n-0-152318a62cd8e44e609c0c1e175a6206)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1738839719-Imb1rmNFDeMsmMYMmLsykOWI3MnyNNKr-0-00f825b83bed31a2985261d5868869f6)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1738839719-9VfeANhdgYJL43osUP1Purd6wPHe8nxi-0-48b06ea795b5a32156781495f2b8d0ea)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1738839719-nhuB07yrvZUvkN4g5PURS00PRHnf5mLf-0-87b8f946c841e93bfdc941969f6edd1c)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1738839719-rPBqpee3IKjA58ZRbkbIgWskg7TM3evm-0-ff8e54bfb3becc0d4aa3447d55bb046a)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1738839719-ecefnP2SfCSUjivO3qQEe2BC4FMObzBf-0-5e826094373468f081ef18e8a03f0cc6)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1738839719-uxfGDA2tqpgysPhbl4OU8CJJPBaejihG-0-9de33387c55585f382f4426de6933d15)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1738839719-jebhUyDaJ3kqbCUmwl0iAmLgmXN6Z7Az-0-4d1d6a16728821109f859d3a7168bd14)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1738839719-MT71EGxugSYH1rxjWXwjFpKHqw6PAUtF-0-9f3f0700a08c330c1d99a8d30ff46d27)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1738839719-Om3EeCLBK92xK99bkezMNrMSUokQj9rk-0-b2d0e4807d75a5e3b3aef3c3978c8551)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1738839719-ufs5Mla700rYC5TlTNTWBvipLrAc8HD4-0-164ffad4de4cd60b8889ebae68eeb7be)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1738839719-YxTYuUxXAP9YvYwok9RQtOAzcwk4STyk-0-e7adffdee76e6985c47fc6edf95792d5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1738839719-guQgL9LF0bY59Yxd5rPTzhvg5wZ9xuJu-0-a3c9502d3775e230b6a0b7cc9f41b35a)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1738839719-7rM91p1KkQk2iacwVVOaPzwjq6k5QyN9-0-0357283da9c722b5d0736b6e5efd4cef)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1738839719-pATjpoEvdejdBNu8wPVyTof8OzgXdaxi-0-b8ddff8f35a1aed1c2c04697628d30de)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1738839719-320cfysVezH3xWTLeXckU9fYRwfEmK56-0-d2449155633572b7613ba165ba4632dc)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1738839719-JGX6XjDOuNJ7PkupoqoYwNTtDpnsokj0-0-9adb4f42019ca0980d94be51c96b23e7)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1738839719-jo16dA5SSejSOo4oibEhwIiZrm9ecdZc-0-18f346487884059d39ec2bbc00d09045)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1738839719-4uN3tey22w9DWmQURe0NBh15iBhJlor3-0-ec7d8875b110a43e942cbf517e8d6c1d)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1738839719-XdPUdiDw6STbaEnB45sBRsJdJZcEgLo5-0-191652001ed9f503f71e5adeeb119eb8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1738839719-8hhcv2gGcBu4P4l1NNrByIP6rbEkKUF5-0-70a043a3a2dab39db1d0f555b5dc60dd)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1738839719-JaHgiufWtUIM2zODKZhjpkiJk9PpfWfI-0-05f9949b976bb74c94447ed1c7346220)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1738839719-vrRxs8kh76Wmdb8WQSAEPyYLkeCSR0C2-0-f77dbedcb96dd3948e1e67a96cc50089)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1738839719-ZIeVC2sm1pHSowRqQYy7JMQb5oQaa4qZ-0-b4764cd8e1507712cd3b152a94ef4f9f)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1738839719-xAgH90NlUfqmt9ljKfIKpMhB4I9360wp-0-448f213c0e2fd61ce5cf4a87e654ba1c)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1738839719-9tV4uMQf9lqxQSWcmm8MoXsauZPE9uPa-0-f65d5fa20247fa08e11d47e929426e74)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1738839719-HGyPqMjgMG4Ykdh56x0Ytu7wJMVTKF6M-0-77406b3462b177fac95e031467297985)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1738839719-BMw7cJdfTPRLj5BCeAWTj6lEHkTXC82x-0-f9c350c5a1877cce36e39bcb240f6040)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1738839719-cEmBkPD5mVxpDXDjlX5i9A0EbHldLyEa-0-c78bc40a328d970157caf9414f2f6e4d)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1738839719-Q67tcsGL9V778NiFCHfvkjFLBmN6Xa0J-0-d9ae79c530c3f1c188fd8d1d5bb7fcf1)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1738839719-uZrgFKqHW2vl7arXjLegIhGxPkvhKFS3-0-d9d89dc29b00e1cb4eb48c0b3b92f8da)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1738839719-x7PYhuFcBVm7rl5MXKeargOVO5d0dZzi-0-7227d8efa36961e7dfe67709aadf8603)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1738839719-H2LVL3Ddk8YZR1oMkZA15VMNPft4QJGT-0-6548e24d81ac4e9a130c4efb1f08e379)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1738839719-dKsNGOD7cLVTg0RyeD8zdzlM4cpRq79a-0-f215ca37f9bb223dd5e50143b11c52a5)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1738839719-CKhdUVoOMJKJdTubvA5KR7MvHoil4pDq-0-a599555a5419a55ad01419661af5d6d7)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1738839719-fjV772C82fjRbtPr6RaEaevHtTnW9IW4-0-9bbafd5ecb7e4934e74ac2ecaee7884a)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1738839719-qzz2g8mddHUYSGt1vq5qKSqGilKK1Mx7-0-f7df96fcfb53024caf467e181597bbc7)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1738839719-jNiPwLOl5y6VeXCITpgIjNLwklYJc6la-0-9f7a3dcf7d991030aec485b3e8fd7865)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1738839719-4bCMIj8CQL3mn6W1vDxP5ZSaohlicWXu-0-7b64743d44922208d30b3672d2cca50c)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1738839719-4uZpANqikS8u8iKF8sqEkQjfe93tzZ1Y-0-45813d8a2d6cc18cac0fd06549d1b8f7)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1738839719-Y1lL3NSJoMZIWVAeDK6rgyY5WObwRHAw-0-1cae0f4fd1b5f6cab889cd47dfcfadf5)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1738839719-pK8LTW8jy7iqS20y8tu0By0XtKLRWD4l-0-3e7ed23c3393e5a3ecd0e2246b5c67a8)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1738839719-omadEkuVY5RtBfL6zmJEbwy8uxpqu9f3-0-dde2794ebcf3bf89a94914bf6f743007)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1738839719-iXxLTMsX2Pt0oE3Q3mltyyln645os9OQ-0-48703aee5f1d7b93485c4669ab0101f7)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1738839719-F1i6zd0MT6qHgqBvtvsgFCT4hsIjrper-0-53346deb6b8a0005b8925332ed3973b8)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1738839719-xt8Qc6LFkAA809CKpklmONmJBE3RGzev-0-f7a5376a1e87aa7b8615cc1c4655c206)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1738839719-x16z2iuKVVsqkn7qHA030HOvhH4iEAfn-0-cde2f260ff16af3b8cbd06bd6fa33af9)
图5.3-3 几个低阶模式的色散曲线