6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1738840421-yV9vMlYEsh2SIvUkZ3DE8MdM77oNFaTN-0-9f271604392c190c16838930dd52640c)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1738840421-qe2m7SBjNXQ55P8NFNybL6ogBT4DIE0L-0-970338e55062b7e4c5124ff305888cdc)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1738840421-DWxYOGgY7lvzOZUSRNhF1ibZg9JcPJ7i-0-9564a73e592121041c32cc41bc621b87)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1738840421-GSzrrzQUVQV4jjrxymuOsUKwIwqSDN2O-0-f4d3e897ac2dc4e643a65693725e8886)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1738840421-py5uTG7CqbSOIgnoBpw3oaaftblVXO8G-0-23913cbba6551b29521f53478994c4c7)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1738840421-93b01rTdCmIdHTVRHpyarPGr0tXV0dtI-0-172630330ab3e0e1e6bbb2cbf115bfed)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1738840421-FKBNEQPUqcbWViyPDoqZS3v77J2yiBqv-0-028fafef01e5850e90d24c2c15536020)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1738840421-WIDXiA4T2HLM6C3XuHj0CflKD8r9FjoH-0-781df4723ea37d86d5a487b2e012d160)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1738840421-9V57B4epdh2yO3yN1RD4s3GifOgP3PKq-0-5e24413894f4a49369ef82403946b6cb)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1738840421-MiTzwCc7APovI5BdZDkwA1pHxdWKXpw7-0-d8124d3f32a75a7b0cbcb3a9b95bba87)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1738840421-oEHAfKCnCj3x2jjljdIAhTeFqAwgbF5M-0-0285332cd260a032eea7d9121309feac)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1738840421-ts61e5uwaWneGLb4KRc23pE6C6FV9sgj-0-86602fa11e8b32007921c208a3ec2576)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1738840421-NwqC5E4Zvm9So7YW0sHfuqpP3OKVW4BR-0-b68818e8262ec5459f0c9eb5ba8bbe3c)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1738840421-wFiXWvDoJ1TaeEabkR7rC2hWC1qDGZuX-0-83c8a344052ead228922ae0fab810845)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1738840421-W8i3fs8hCp6D3cFMtD0uPsx705UNLvnF-0-c8402a6a71d80d789c134f37dc11ce59)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1738840421-LnHWIQJsBJ98AzAT1759v8cW8VyJYhF8-0-98538b06c11a89dc48dfb90b076f518e)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1738840421-NDBneAOhVdmp9x6zeqo3VTXOayF9ElZS-0-b2175f1ecbc3e1ba985c641c8ca4834b)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1738840421-0PaPwoSNnsKV7R3VxKAI22KbGm9gpfqD-0-6922cba4f691ac2a32c89759f781b72b)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1738840421-GhvZguo99y2nI2Xcw5yYHmlJOZ4wrNwD-0-32fa82982d877966ab54c96fbc42e545)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1738840421-L6eMoc5PW8SCZNoElltpGA7PRpK71MiD-0-0ebe5443a3ed4ee40a2e74599c19941e)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。