- 电子商务理论与实践:SCM ERP CRM DW USE B2C B2B B2M M2M和C2C举例
- 陈华
- 839字
- 2020-07-09 17:14:39
2.4 投入产出模型的三级分解协调预测算法
2.4.1 问题的提出
根据上节,投入产出模型的优化问题可以表述为
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739321610-riUlBoeJcQRZozMReFNTVEB5Sy1T9xBm-0-8e0d52faa36d80a0bf52a759f1481ac2)
2.4.2 问题的求解
定义对偶函数φ(λ)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739321610-vXuJaTpjHmGU0ZsXOD4UH6f6EXgTs3aa-0-593c087c4f2183fe5d5a983ea1a17cf9)
于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739321610-Jdm6rhqFbpzn7p4G7ceMyxYlZ9SwSoaq-0-5e24d082569de2cd1dbdaeecd46d0f5e)
由于
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739321610-GekW7Nph7sKxP2DdUOFnALDltGtaar7r-0-1d59989c2c590ede3cd61b7a892baf93)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0001.jpg?sign=1739321610-jKYvcWMZG3OsGh3MVqDkVDJIGznAHEGg-0-b5a72d8a34f3d2d891cf7e19ee6b1e3d)
及同理得出的
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1739321610-G9YrxUfow1q3ou1kECrlT9XTWD0uV472-0-2fe94ac7fbf5ae93122822b7a2f66299)
我们可以得到,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1739321610-IYuKt5rDhSOuCOfBmH7berG5DyAPRVel-0-247fc6141977b71f381a20656874173e)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0004.jpg?sign=1739321610-HolYBjLInr2a9GFZLuV8Mf760teVzVXi-0-b4e4a4c5d042e6cc0940d6f883bb7cf8)
在第三级给定λi(k)=λ*i(k)的情况下,第二级求Li的最优。而第三级本身则是用关联变量的误差作梯度,用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739321610-l0p6xDjPsqxIh1S4NMMOYQZzQpQmBOKS-0-ce699d9e0c3105f2c029bb717f88994f)
若把N年以后的产量X(k)(N+1≤k≤N+T)当作X(N)的线性函数,如X(k)=(1+b)k-NX(N),其中b代表增长率,即假设规划目标年以后若干年的产值都按照固定的百分比增加,则第二级只要给出在λ*i(k)下使第i个子系统(i=1, …, C)已达到最优时的Xi(k), Zi(k), k=0,1, …, N,即可反馈回第三级。
对第二级,把子系统的拉格朗日函数按时间下标分解成子子拉格朗日函数,这样就把一个泛函优化的问题变为参数优化问题,很容易在第一级求得显式解(梁循,2006)。具体做法是:
定义对偶函数
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739321610-LReeAllxfa6xC0WMs628ftCJHf5xfcVH-0-947820ee5d2ec63f7350f42d759afb61)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739321610-um2eybOqNH4byrQMHSDtWiRmRhvJL8BV-0-3765039cdd5395e38766504c3df38192)
设λi(σ)=0, μi(σ)=0, Hτi(σ), Wτ, ij(σ)=0。当σ>N或σ<0,我们有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739321610-njkFDa2xZnEhUmvWc0XdzcOIpfvnrWgK-0-1811e166e69cc9c38b02d43d8714bfcf)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739321610-o3BOC9vjh8wGRVChGjuLYgHIpH1Ik4tX-0-3727e57308736feefddc141f3e3a6ef7)
于是,每个子问题Li又可分解成N+1个独立的子子问题,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739321610-ikvEsmY0ilxZIrDBRlATjizbtBDIn64l-0-bcf5bf1b1dd6fe6d1d5458301ec5f6c7)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0006.jpg?sign=1739321610-GGF6PukCnl6sln3xKt0EL8mYCuRZ3fWg-0-22e230e38e407f5d1becabdc7a74d0cc)
在第二级给定μi(k)=μ*j(k), k=0,1, …, N的情况下,对第i个子系统,第一级求Li(k), Li(N)最优,而在第二级用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739321610-o5zQrXADhEac61EKKUH04FD8y9KQsX3g-0-4ba996132680f74ea0764d01c6e0a568)
在第二级第i个子系统的子子系统中求出Xi(k), Yi(k), Zi(k)(k=0,1, …, N)后,即可反馈回第二级。
由Li(k), Li(N),并注意X(k)=(1+b)k-NX(N),(N+1≤k≤N+T)可得,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739321610-nhPiwlqNqliwAWBHzxmGBh6UPmViiCtv-0-06bc23df25f9b8be235815dca95323cd)
可得Zi(k), Ui(k), Xi(k), k=0,1, …, N。于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739321610-1iPphW5EvqIePR2m8FMZb3bp12luAp2j-0-b2949c8e51e8765517cd4c4a8cf1e2ba)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739321610-Q0zDWAORVAgRkYX2JRBnPVtgr8c0zxli-0-951322cb6bfb6f3e7ca1446eda275ac8)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739321610-iKs1UoSM9Cqag5TwskVlXnR701GLUX9b-0-2399cc4f349ed16116da02516b7f87ae)
在第三、二级中,新的协调变量由下式确定:
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739321610-k52NdYbA89nkTPDciqIxDeauVNCQBZHf-0-ace25308a392f7bbccc26f62be4a535c)
其中,l=0,1, …为迭代次数,αli(k), α′li(k)为寻优步长。
若用梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739321610-kOHVs2eheYXd6znnAfKq4XNDQUFuPSor-0-763471ac4eb532815ca55698d32ed4b2)
若用共轭梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739321610-daYxfu4VVW6yrD4YJjXOEK0QT49F3GoU-0-5ef93c7a26693c5d59300d14eafb6121)
上述三级结构如图2-3所示(梁循,1990)。
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739321610-ClOuzWMG8h1ueIoPNtSiJAt9LznkPKtX-0-ce499ec99f175b472541ff9930e84544)
图2-3 三级分解协调算法
算法在第一级就获得一个显式解,而第二、三级算法很简单,因而使整个计算变得十分简单。同时所需要的存储空间进一步大幅度缩小。本算法的另一优点就是用简单的办法处理不等式约束。
如果还有其他对i, k的加性可分等式约束,可以用同样方法处理。