第2章 PyTorch基础

PyTorch是Facebook团队于2017年1月发布的一个深度学习框架,虽然晚于TensorFlow、Keras等框架,但自发布之日起,其关注度就在不断上升,目前在GitHub上的热度已超过Theano、Caffe、MXNet等框架。

PyTorch 1.0版本推出后,增加了许多新的功能,对原有内容进行了优化,并整合了Caffe2,使用更方便,大大增强了生产性,所以其热度也迅速上升。

PyTorch采用Python语言接口来实现编程,非常容易上手。它就像带GPU的Numpy,与Python一样都属于动态框架。PyTorch继承了Torch灵活、动态的编程环境和用户友好的界面,支持以快速和灵活的方式构建动态神经网络,还允许在训练过程中快速更改代码而不妨碍其性能,支持动态图形等尖端AI模型的能力,是快速实验的理想选择。本章主要介绍PyTorch的一些基础且常用的概念和模块,具体包括如下内容:

·为何选择PyTorch。

·PyTorch环境的安装与配置。

·Numpy与Tensor。

·Tensor与Autograd。

·使用Numpy实现机器学习。

·使用Tensor及Antograd实现机器学习。

·使用TensorFlow架构。