- 伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】
- 圣才电子书
- 1168字
- 2021-05-28 20:59:34
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1739329484-WXT8yawtqVXl6ucTIpHgEn2OaOZcrRGZ-0-842b3e62b221e657265680b79d51edfe)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1739329484-XzMZj11cY7eFR0ga0cb9KdxgDnaOZTQP-0-8b1f8807d0b769a705ce03ee471d9c38)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1739329484-L1bFK1Tj9vI0QEoV8hFmnXdb3A9vYXPe-0-b073863c55c4e42252f9e4160c9738c8)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1739329484-4JUAkeQrl5TfEludoLTmPbxgOi4aTXwK-0-fb2d49383767b42ba06d64d7c64b4fdb)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1739329484-qrBVyVZRbIZvWI0iEy4IAjK2M2z7YAxY-0-3518a049bc1684f123ffc7d07eed55ac)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1739329484-be2CX0VgyhvMmFOyPrgYyUmRQOvi1pUn-0-c1c5cdd5450553b865149211f4e67414)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1739329484-vSxzeN5MfEBN9XnWzsMr00DGJG0yxrfM-0-7a3aa229af08b151b1e19693756a43a7)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1739329484-eLXSeQgpx1dVY3MT1SPvMgHsOOmuJWNk-0-15ae8217f2b33830db69b905e434e914)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1739329484-Lt3WZsdlOrXBZqJyk1yWQ9oDNuFJDvGR-0-da2a2973771cb88e401cca5d69e6be66)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1739329484-ITo66EqiTcy11BRMlMY0QT5Zb4j7RYBu-0-c106188c25db3743926bbf20d0704c3e)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1739329484-z5xgAlN9MKKCuHUqY84WO5YmxCQ3UJ56-0-88a4b044d95670d489c2f0a3403df567)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1739329484-uZ1TBxXPaoHsrQy9w94B9k7NWWuhz4r9-0-df1f70fb18c13250bc2ac162cfaf78ed)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1739329484-FC5n5gAerh8kOcghPel6bZ0n4f31Lwb9-0-b7d3ee1b1ccda8b19bf6aad4e599cb6b)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1739329484-JM3qWm0yoHNoE0T1yZJesnVPwl6PCTNx-0-667bdd830dd0df5767686431bfd60431)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1739329484-uceL6gcEKeBwwuOebbop52ov7LLioTqR-0-c7f4f122ce51748cf42b25e2586d0aa4)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1739329484-HNgrg4A17NdyDrW9FQSzfN5ozOFvDGAk-0-78be0c483a0b7c8a463893bd8b3328c8)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1739329484-NfUaTVvdnlWtveje9z1Cj9Ek98GQvJGY-0-20faa9d8f98ec4618f305a0e1d66b0c1)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1739329484-jw7SonYgXhgTyXNFaLilidbYsHzNR6TA-0-7414720f5edc9a2e8b502bc7a42f13d7)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1739329484-nP7fripAxtI3UHLEaHE6v8xr8EZll8oV-0-78af525789d6a7603ef88f9fff57d27d)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1739329484-2ciwSrSKmM2xmrxU459FI1tyP13zRE8X-0-52a827a29d7bc0a17f7cc58de00a95e8)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1739329484-Tem6kevlj4xyEw2CkqBc6NyzrfUfLIGp-0-f2999fb08abaaf4452c12b0d952928f1)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1739329484-dzl0gT3BlK9Fen7sKhqWjh3FUa7ZGaHe-0-a92657ce25eb026876a63ed495047c7d)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1739329484-q3Nnet3zxiVhAE1M7lDzfnEHR2PxgNn8-0-21b9e53563db03a40663fb1eb87b4fdc)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1739329484-jdH5Buclr2siYdDKH0xyhCA4lm1RURer-0-3b1be773926a494a4ea4972d1050c81d)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1739329484-YI0eSEoD1HYqRqXD2XycNBAPKid6qlo2-0-966f912a0c878c5c56b047b431a19d78)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1739329484-8tjyZoZxcNnnJcecXh8QYNCnRP50z2QV-0-5fb7900037d5d1edc741b342da1a71ad)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1739329484-BEbZmy23uHt7VpEhvOu1LRIssfhPbWDc-0-6d3bfde2ba13dd34e58275610fcc36bf)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1739329484-XHDY7rGQ2fNfXYm3ZCwqWGuePckPMfOB-0-99c391799133c3fe10601bae0bcb076a)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1739329484-eD4H6tpG7f2AtlQS6Dq2KBhvJj4MHmz3-0-7a84c106ac4ba0a5be9cc4a8979a782d)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1739329484-Wt4gUxdmvUaKXK7oxDHVZS8fbAavp8RM-0-a8901aecc78e1294a4a48436000bba95)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1739329484-FasW4jUWns0NmtLGvO9UzBFKlD7y2Ob5-0-4d4907e364b4267f6445262d5343577f)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1739329484-gMmu0K99oiG9b7x0Wt5vxqregVL01o2Q-0-1a6c70051b18524b5a668c1107212c34)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1739329484-VUhVk3BePj53zbtFtpJ0ajEEx7dDhSWF-0-d76898e906bfdb6d4e8bc292e93b0636)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1739329484-kHZJd5pXn8snT84rb4a7zbQCeNFy9OcK-0-27d36f64c9291dff72c606d7a65a9ea3)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1739329484-MHBdSUKuUostcuW8YLQwR4AxUaJtKqRK-0-e2e4c6b0b3d1b7e8cc918a5bd3b2b6eb)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.