习题二
A组
1.指出下列函数是怎样复合而成的:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739270360-g144Bf7apPonryuNsqOhXk4LLaau0QJ3-0-75b8826c5e31bfdeeca40a8542990cbb)
2.什么是分段函数?分段函数是几个函数?分段函数是初等函数么?
3.选择题:
(1)已知数列0,1,0,1,…,则_____
A.收敛于0 B.收敛于1 C.发散 D.以上结论都不对
(2)下面数列中收敛的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060001.jpg?sign=1739270360-cvUgS5Lq7zXcBsc71vFgI2JaCSnkgIBJ-0-6bd05bb81292ccdf1b9fc4dd97a87847)
(3)下面数列中发散的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060002.jpg?sign=1739270360-Al0qW9To3cbJPMrQq3t0nLYMqcy16cME-0-301c3356c1d1f36810dcebb2f78d7fdb)
(4)收敛数列一定_____
A.有界 B.无界
C.可以有界也可以无界 D.以上都不对
(5)x→x0时,函数极限存在的充要条件是_____
A.左极限存在 B.右极限存在
C.左、右极限都存在 D.左、右极限都存在且相等
(6)当x→0时,是_____
A.无穷小量 B.无穷大量 C.有界变量 D.无界变量
(7)当x→∞时,是_____
A.无穷大量 B.无穷小量 C.有界变量 D.没有意义的量
(8)两个无穷大量之差是_____
A.0 B.无穷大量 C.常数 D.不一定
(9)如果xn是无穷小量,yn是无穷大量,那么一定是_____
A.无穷小量 B.无穷大量 C.常数 D.以上结论都不对
(10)当x→x0时,函数f(x)有极限是f(x)在x0点处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
(11)下列条件:
①函数f(x)在x0点有定义;②存在;③
.①②③是函数在点x0处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
4.证明不存在.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00060009.jpg?sign=1739270360-jmByDLa9n8ho8oM73dgSAfKdfxtWQIy9-0-17e0ab84509f072be127b1b2bef3ec6b)
分别讨论x→0及x→1时,f(x)的极限是否存在
6.求极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061001.jpg?sign=1739270360-NYUAyt24ZdXfF9QBZ8lnMOSluXb4iehg-0-c18ac2734819b489bbded565ebe2c57f)
7.当x→1时,无穷小x-1与(1)x2-1,(2)是否同阶?是否等价?
8.求证:当x→0时,.
9.已知,试确定b的值.
10.设=2,试求a,b的值.
11.求函数的间断点,并指出其类型.如果是可去间断点,则补充定义,使它连续.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061006.jpg?sign=1739270360-bScYKFdq6atzv7DIYsfXOT0Blho3eDar-0-56d7ad33bb2c718d86bbb0cc41ec13c6)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061007.jpg?sign=1739270360-WHoJFwazfV10x8KaJEBRCLgWlVajAgCU-0-44d18982985c467dd3b48c6248331646)
试确定a的值,使存在.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00061009.jpg?sign=1739270360-H6UricgLZRNoFo0NM585T7sVh9KDb37b-0-2a0c107937ef13eb9b155562f44689be)
问:k为何值时f(x)在(-∞,+∞)内连续?为什么?
B组
1.下列函数是怎样复合而成的?
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062001.jpg?sign=1739270360-Y0qxx0toOLlAUJEeZjdIhTgOyL3lV2hy-0-b8fe11b93580ba2abdde8f53dae8bb6b)
2.选择题.
(1)数列xn与yn的极限分别为a与b,且a≠b,那么数列x1,y1,x2,y2,x3,y3,…的极限为_____
A.a B.b C.a+b D.不存在
(2)=_____
A.-1 B.1 C.∞ D.不存在
(3)下列极限存在的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062003.jpg?sign=1739270360-5e5vPDRIBuCt2hOy9LI6ald67mj1ag4H-0-a8295437c23efe91eff8daae103e48b3)
(4)当x→0时,无穷小量α=x2与的关系是_____
A.β与α是等价无穷小量 B.β与α是同阶非等价无穷小量
C.β是比α较高阶的无穷小量 D.β是比α较低阶的无穷小量
(5)已知当x→0时,f(x)是无穷大量,下列变量当x→0时一定是无穷小量的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062005.jpg?sign=1739270360-04H1Qhet5lzFH3ON0LqgEkroZhVI6jf8-0-c3a931039384333b4942999537d5040c)
(6)当x→∞时,若,则a,b,c的值为_____
A.a=0,b=1,c=1 B.a=0,b=1,c为任意常数
C.a=0,b,c为任意常数 D.a,b,c均为任意常数
(7)下面结论正确的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062007.jpg?sign=1739270360-VruIVl4aVA8KcwJjc5PnRLwhJi2TdME9-0-c4e984288d7bd74455051a744bb12474)
(8)函数在点x=1处_____
A.连续 B.不连续,但有右连续
C.不连续,但有左连续 D.左、右都不连续
(9)函数的间断点有
A.1个 B.2个 C.3个 D.4个
(10)下列函数在点x=0处均不连续,但x=0是f(x)的可去间断点的是_____
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00062010.jpg?sign=1739270360-nv84BPPlYVkzy77NOVihyHQsJl6KDrhw-0-1611206096ef866676d002f004101d32)
3.求极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739270360-ptLtWqCO8VwTnCjFHuDkifF3tMXQcDY8-0-f0cd7b3b688d509940638d67476bebf7)
4.已知,试确定b的值.
5.已知极限存在,试确定a的值,并求出此极限值.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063004.jpg?sign=1739270360-rzRIFXe4tulVpfn66RBwZzs2hQLa38Me-0-be109b08c6a53940d5d0e7fec34207fd)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063005.jpg?sign=1739270360-U4ohZqoO0M5PZlbluJ7A23NgxywN1dKM-0-6d4939f1e180b6f495b747220c197c98)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739270360-vvGbmwmMoNITbglkFPEFBGPIqJwx0qET-0-973205541e551151ed33941922cc04c2)
9.试证:当x→0时下列函数均为无穷小量,并与x进行比较.
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063007.jpg?sign=1739270360-RyWoXYqusPrBlwEpKqK5yUNybBPYujJp-0-4c5b95b7bd0fb98c5c095a8b3c5c474e)
10.利用等价无穷小求下列极限:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063008.jpg?sign=1739270360-pIkTrt8lw8LERihoS90NZueenCHFkLp8-0-8091b2008eda58e92dfe457f0b97fc3d)
11.问a为何值时在(-∞,+∞)上是连续函数.
12.在x=0处连续,问a何b应满足何种关系.
13.讨论函数在分段点处的连续性,或确定a的值使函数f(x)在分段点处连续:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00063011.jpg?sign=1739270360-nnZn79pLN5EA1Z38pdfApm3qu1P9wxcE-0-125ca0b87904d091f9e96c3a3c1098a5)
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00064001.jpg?sign=1739270360-dKxrUkSAQGM0Vy4eDwHttocIaMNxtLSq-0-47bb313c39f4bf15f8fb797d1ac776f9)
14.求函数的间断点,并指出其类型:
![](https://epubservercos.yuewen.com/28014C/17180242205264806/epubprivate/OEBPS/Images/img00064002.jpg?sign=1739270360-Tpy26LYOIdkZ9yO7smxjYymjOZ66YcWk-0-3610df3b0c6fb9794b50c9283f24b00a)
15.讨论函数的连续性,并判断间断点的类型.
16.设函数f(x)=ex-x-2,证明:在区间(0,2)内方程f(x)=0有一个实根.
17.证明:函数方程x-ksinx=1当0<k<1时,仅有一个实根,且位于区间(1,2)内.