- 贝叶斯的博弈:数学、思维与人工智能
- (法)黄黎原
- 2464字
- 2022-08-08 15:41:33
客观性的迷梦
但神秘的是,贝叶斯主义长期以来被许多代顶级科学家所否定。为什么呢?这些大科学家是不是并不理性?他们出于什么动机否认贝叶斯主义?如果这种否认没有依据,那么这些大科学家做出的又是什么样的错误推理?
说起来,本书尝试终结的这场两个世纪以来关于认识论的“游击战”,可以被简单归结为一场在“客观性”这个概念上的冲突。我们甚至可以将主观的贝叶斯主义者和客观的频率主义者的对立归结为这个问题:概率是什么?
对我个人来说,这个问题产生的影响尤其深刻。在巴黎高等师范学院入学竞考的 TIPE 口试 4 中,我就被问到了这个问题。这个口试本应是对一整年所进行的研究项目的报告。我特别自傲于我的研究项目,那是对足球比赛的建模,我估算了不同球队的水平并模拟了多场比赛。我利用此前两年的比赛结果得出的模拟结果是,2006 年世界杯的前三大热门球队是葡萄牙队、法国队和意大利队,他们夺冠的概率分别是 20%、15% 和 10%。这结果不错,因为最后这三支球队在比赛中最后的排名分别是第四、第二和第一!
4TIPE 的全称是“Travail d'initiative personnelle encadré”,意为“适度发挥个人创造力”,与中国的“研究性学习”相似,是法国工程师学校竞考中的一门科目。每个学年初,管理竞考的部门会公布当年的主题,学生在当年内必须自行提出与主题相关的研究题目,并在教师的指导下,通过检索已有成果、自行研究与实验的方式,在进行自主研究的过程中学习研究。最后,学生需要将研究过程与结果写成报告提交,并在口试时进行答辩。——译者注
巴黎中央理工学院组和巴黎高等矿业学院组 5 的考官非常欣赏这个项目。我获得了不错的分数 6:19/207。然而,巴黎高等师范学院组的考官对比赛模拟并不感兴趣。他们很快就打断了我,只想知道我知不知道概率怎么定义。
5法国工程师学校的竞考分为数个独立的组,也叫“学校库”(banque),同一个组每年只会进行一次竞考,竞考的结果受组内所有学校承认。目前的竞考组包括巴黎综合理工学院组、巴黎高等师范学院组、巴黎中央理工学院组和巴黎高等矿业学院组,等等。不同的组之间也会合并某些考试。——译者注
6这实际上是我在 TIPE - ADS 项目上的总分。(ADS 的全称是“analyse de documents scientifiques”,意为“科技文献分析”,形式与 TIPE 相仿。考生进入考场后,有约两小时的准备时间研读一篇约 20 页的科学文献,之后向考官总结文献内容并进行答辩。——译者注)
7法国的打分制以 20 分为满分,19/20 即在 20 分的满分中取得了 19 分。——译者注
我的回答是频率主义式的。我断言,某个事件的概率就是在重复无数次实验时,这个事件发生的频率的极限。特别是,所有经验上的频率都似乎只是某个基本而客观的概率的近似。不管这组考官是不是数学上的纯粹主义者,反正他们都不太满意。实际上,他们期待我给出概率的数学定义,比如说概率就是某个单位测度上定义的 代数上的某种测度。我这场口试的得分只有 6/20。
还是忘了我的遭遇吧,纯粹贝叶斯主义者会说,这是由于年轻而犯下的错误,我们之后会再谈到。
我从小到大都是频率主义者。我一直沉浸于寻求真理,无论是数学真理还是科学真理。我接受了客观结果的存在与优越性。就算在 2013 年我被“钓鱼”学生问倒的时候,我教的那门课绝大部分也是频率主义的。而我当时觉得,这就是应该教给学生的正确的统计学!另外,我的足球比赛模型也是典型的频率主义,正如我们之后会讲到的施泰因悖论那样,如果这个模型能再加上一点贝叶斯主义,本应更准确。
更惊人的是,即使是我算出来的概率,在本质上也不符合频率主义!法国赢得 2006 年世界杯的频率并不是 15%,而是 0。的确,2006 年世界杯只有一次,而且法国输了。
但如果说模型预测出的 15% 显然不是频率,那么这个数值应该怎么解释?我们还能不能说它是个概率?
纯粹贝叶斯主义者的回答是肯定的。这个数字就是根据我的数学模型得到的法国赢得世界杯的概率。换句话说,这个概率是主观的,它是模型的意见。然而所有概率都是如此。对纯粹贝叶斯主义者来说,任何概率或者认识都不是 客观的,而任何否定这一点的人,都在将自己的主观愿望作为一种现实强加于别人。
的确,如果认真思考的话,我们就会发现所有寻求和整理知识的方法似乎都必然有某种偏见,偏见就在于选择了这个方法,而不是其他方法——当我们援引不精确的奥卡姆剃刀、“已然确立”的科学知识或者本身就有问题的 值的时候更是如此。更糟糕的是,我们审视、处理和选择数据的方式,不可避免会影响数据分析得出的结论。我们将会花一点篇幅来讨论事实有时候是如何严重误导我们的 [11]。
此外,即使指明用到了什么方法也不够。利用机器学习在大数据中推断出有用信息的数据科学家很早就发现了,没有人工干扰不一定能保证客观性。无论是人还是机器,我们似乎都必定要在某个模型内部进行推理。所以说,我们的结论似乎必然依赖于模型。纯粹贝叶斯主义者断定,这就说明了所有知识都必然是主观的。
这也许会令你不安。贝叶斯主义似乎更接近相对主义。如果所有知识都是主观的,那么是不是什么意见都是等价的?答案当然是否定的。即使我们每个人都看到了属于自己的红色,这也并不说明,对于“法国国旗上有没有红色”这个问题来说,所有意见都是等价的。
尤其要指出的是,对于在同一组数据上严格应用贝叶斯公式的人来说,他们的置信度最终会落在同一组模型上,特别是在数据量大的情况下。但对纯粹贝叶斯主义者来说,就算在数据量相对小的情况下,即使所有人面对的数据都相同,那些赢得了贝叶斯主义者置信度的模型也比其他没有应用贝叶斯公式的人所青睐的模型更贴切、更有用。
要特别注意的是,贝叶斯主义(特别是实用贝叶斯主义)并不能代替数学建模。这种哲学的首要目标是分辨出有用的模型。贝叶斯主义的基础实际上可以用贝叶斯主义的“至圣先师”乔治·博克斯的一句话概括:“所有模型都是错的,有些模型很有用。”我经常复述这句话!不管这句引语是否“正确”,但它对我来说非常有用,可以帮我跳过那些一开始就注定走进死胡同、没完没了、能把人烦死的辩论。就像那些贝叶斯主义前辈那样,我最后发现判定模型的用处更有趣,尤其是它对预言能力的判定,其真实性则无所谓。
然而纯粹贝叶斯主义者会说,要正确地衡量不同模型是否有用,唯一的方式就是借助贝叶斯公式。