内容简介

在大数据时代,机器学习(ML)在互联网领域取得了巨大的成功,数据应用也逐渐从“数据驱动”阶段向“模型驱动”阶段跃升,但这也给ML项目落地带来了更大的困难,为了适应时代的发展,MLOps应运而生。本书从多个方面介绍了MLOps实践路径,内容涵盖了设计、构建和部署由ML驱动的应用程序所需的各种实用技能。

本书适合数据科学家、软件工程师、ML工程师及希望学习如何更好地组织ML实验的研究人员阅读,可以帮助他们建立实用的MLOps实践框架。